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ABSTRACT 

A peak tracking method based on a simulated feed-forward neural network with back-propagation is presented. The network uses 
the normalized UV spectra and peak areas measured in one chromatogram for peak recognition. It suffices to train the network with 
only one set of spectra recorded in one chromatogram of a sample to recognize the sample peaks in other chromatograms recorded in 
different mobile phases. The peak recognition method was used in a mixture design-based optimization of the separation of eight 
sulphonamides, some of which have very similar spectra. Even peaks in a cluster of four to five overlapping peaks could be recognized. 

INTRODUCTION 

Peak tracking 
For the optimization of ternary and quaternary 

mobile phases in HPLC by simultaneous methods, 
mixture designs are often used [l-3]. Peak tracking is 
essential for the application of these methods be- 
cause the capacity factor of each analyte in the 
sample has to be determined in every design point. 
Peak recognition has to be discerned from solute 
identification. In solute identification the chemical 
identity of a peak is determined by comparison with 
the retention time or spectrum of a reference stan- 
dard. If the number of analytes is not known then 
the issue of the peak homogeneity has to be ad- 
dressed, otherwise peak recognition is sufficient. If 
the number of solutes is known it suffices to keep 
track of the band identity when the chromato- 
graphic conditions are changed. 

Even if two peaks overlap completely, identitica- 
tion by exclusion is possible if the other peaks are 
recognized, and both can be given the same value of 
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the capacity factor. Severely overlapping peaks pose 
a different problem as their identity has to estab- 
lished unequivocally. This may be done by separate 
injection of the reference substances and compari- 
son of retention times. This is time consuming and 
reference substances have to be available. If refer- 
ence substances are not available, comparison of 
peak areas is another possibility. At least a 20% 
difference in peak areas is needed for the correct 
assignment of each peak and the number of peaks 
has to be equal to the number of solutes in all 
chromatograms [4]. Moreover, peak areas may 
change considerably when the changing chromato- 
graphic conditions shift the UV spectra of the 
solutes. 

Multiple-wavelength detection considerably in- 
creases the information content of the chromato- 
grams and spectral matching can be used to recog- 
nize peaks in different runs. Deconvolution tech- 
niques can also be used to extract peak profiles and 
even component spectra for overlapping peaks [5]. 
By factor analysis methods and a set of reference 
spectra the presence of a solute in peak cluster can 
be revealed [target transformation factor analysis 
(TTFA)]. Both the individual profiles and compo- 
nent UV spectra can be derived by an iterative 
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procedure (ITTFA) [5]. These methods are very 
powerful, have complementary characteristics and 
require expert knowledge for their correct imple- 
mentation. 

Peak size plus relative retention have been com- 
bined in a peak tracking procedure [6], but the 
combination of peak size and spectral information 
has also been used [6,7]. Reviews of different peak 
tracking methods have been published recently 

[4,8,91. 
Wright et al. [lo] used a peak recognition strategy 

based on comparison of peak integrals determined 
at different wavelengths in an automated optimiza- 
tion procedure. They stated that the procedure 
requires only complete resolution of each solute in 
one of the seven chromatograms resulting from the 
mixture design and complete resolution of all com- 
ponents in a single chromatogram is not required. 
The tracking procedure was shown to deal with 
situations where moderate two component overlap 
occurs. 

The tracking procedure proposed in this paper 
uses UV spectra collected by a multi-channel diode- 
array spectrophotometer and peak areas measured 
at one wavelength. The spectra of all components 
are measured in one chromatogram, normalized and 
multiplied by the corresponding peak areas and used 
for training a neural network. To obtain the training 
set of the pure spectra, the front or tail of a 
two-component chromatographic peak has to con- 
tain the single pure component and complete resolu- 
tion is not necessary. The trained network is used for 
peak recognition and again complete resolution is 
not necessary. In principle, none of the chromato- 
grams resulting from the mixture design has to be 
separated completely, the spectral similarity of the 
different solutes can be high and shifts of the UV 
spectra on changing the mobile phase composition 
are permitted. 

Neural network 
Neural networks are mathematical systems de- 

signed for parallel processing of information con- 
sisting of processing elements, neurons or nodes. 
The following description applies to a typical feed- 
forward neural network with back-propagation and 
is restricted to the information necessary to under- 
stand its functioning. Books on different types of 
network [l 13, the back-propagation network [12] 

and papers reviewing [13] or describing the theory 
and application of the back-propagation network 
[ 14-171 have appeared recently. 

The typical feedforward neural network with 
back-propagation has three layers of nodes: the 
input, the hidden and the output layer. The nodes of 
the input layer accept the input vector X, (absor- 
bance values measured at different wavelengths of 
the UV spectrum in this instance) and each node is 
connected to every node of the hidden layer. Each 
node of the hidden layer is connected to every node 
of the output layer that produces the output vector, 
Yk_ These connections are weights which are applied 
to signals passed from one neuron to the next. The 
nodes in one layer are not interconnected. 

There is one input node per variable in a spectrum. 
The input nodes pass the weighted input signals to 
the nodes in the hidden layer. The hidden layer 
nodes transform the sum of the weighted inputs by a 
non-linear, sigmoidal transfer function and pass 
weighted signals to the nodes of the ouput layer. The 
output nodes produce output signals that are ob- 
tained by applying again a sigmoidal transfer func- 
tion (eqn. 1) upon the sum of the weighted values 
passed to them. 

f(x)= 1 +e!‘x+” 
The bias parameter, 0, can be treated as an 

additional weight that is always added to the weight 
vector of every node, but is multiplied by a value of 1 
instead of yj or yi (see eqns. 2 and 4). It can be 
regarded as a threshold value at which the output of 
a neuron is released. 

The number of output nodes is equal to the 
number of components of the sample; the number of 
hidden nodes is an adjustable parameter and was 
chosen to be equal to the number of input nodes. 

The weights or connection strengths between the 
nodes in the consecutive layers of the network form 
two matrices, which contain random numbers in the 
untrained network. In the trained network the 
matrices contain the modified weights and represent 
the knowledge of the network. The weights are 
modified by supervised learning. During the training 
pairs of input and output vectors, X, and Tk, are 
presented to the network. The training set consists of 
spectra of the solutes and the corresponding target 
vectors. During the training the produced output 
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vector, Yk, is repeatedly compared with the target 
vector, Tk. Each time the weights are adjusted in the 
direction of the correct answer. The change of a 
weight, Awj&, between a node j of the hidden layer 
and a node k of the output layer is proportional to 
the difference, b&, between an element of the target 
vector and the corresponding element of the output 
vector and to the value yj of the signal passed on by 
the node of the hidden layer to the output node 
(delta rule): 

Awjk=q dk Yj 

where n is the learning rare and 

(2) 

dk = (tk - yk) Yk(l - Yk) (3) 

For the calculation of the error term, 6j, of node j 
of the hidden layer, comparison with a target value is 
not possible, but the error has to be calculated from 
the output layer: 

AWij=q 6jyi 

6j = c(dk wjk) yj(l - yj> 
k 

(4) 

(5) 

where Awij is the weight between node i of the input 
layer and node j of the hidden layer and yi is the 
output of input node i. 

To summarize the back-propagation algorithm: 
& is propagated through the network to the output 
layer. The output Y&is compared with the target, Tk, 
node by node and used to correct the weights. 
Corrections for the hidden layer are calculated from 
the errors of the output layer. 

To complete the description of the back-propaga- 
tion network, the momentum term has to be dis- 
cussed. The momentum factor, CI, relates the present 
value of Aw(t) to its value in the previous learning 
cycle, A w(t - l), and furthers faster convergence 
with fewer oscillations and avoids entrapment in 
local minima. 

AW,(t) = q [(I - CI) 6jyi + a Awij(t - l)] (6) 

The neural network programme used in this 
investigation uses eqn. 6 and a value of 0.9 for a. 
When a neural network is used for spectral recogni- 
tion one attempts to obtain a model that produces 
the correct set of outputs for a set of spectra. Such a 
model is obtained by training the network. The 
trained neural network should be able to generalize 
from the examples presented during the training, 

i.e., spectra of several analytes recorded in a given 
mobile phase composition, to other inputs that it has 
not yet seen, i.e., spectra of the same analytes 
recorded in different mobile phase compositions, 

An important issue in the application of a neural 
network is the choice of the training set: how many 
examples are necessary and how well has the vari- 
able space to be covered by the selected examples to 
obtain a trained network that produces correct 
outputs? 

In this work we obtained two collections of 
spectra, one of twelve sulphonamide derivatives and 
another of fifteen mainly benzene derivatives, re- 
corded in six different mobile phase mixtures com- 
posed of water, methanol (MeOH) and acetonitrile 
(MeCN) (Tables I and VI) to train two networks. 
Each collection of spectra consists of six sets of 
twelve and fifteen spectra, respectively. First we 
investigated how many of the six sets were needed to 
obtain a trained network that could recognize the 
spectra in the remaining sets correctly. We also 
investigated whether the number of training sets 
could be reduced by multiplying the normalized 
spectra with a number corresponding to the peak 
area. Second, a subset of eight sulphonamide deriva- 
tives was optimized by a mixture design procedure 
[3] using the same variable space to test the proce- 
dure. To make the test more severe, an old column 
with a low plate number was used. 

EXPERIMENTAL 

Apparatus and materials 
The spectra were recorded with a Philips PU4120 

diode-array detector. This detector was combined 
with a Waters Assoc. Model 6000 A pump and a 
Rheodyne Model 7010 injection valve fitted with a 
20-~1 loop. Separations were performed at room 
temperature (cu. 20°C) on a 200 x 4 mm I.D. 
stainless-steel column packed with Nucleosil RP-8, 
particle size 5 pm, N= 2000. The flow-rate was 
1.0 ml/min. The dead time was measured at all 
design points by injection of uracil and was 2.0 min. 

All calculations, i.e., data handling of the diode- 
array spectra, peak integration, principal compo- 
nent analysis (PCA) and simulation and training of 
the neural network were performed on an IBM- 
compatible AT 286 personal computer with mathe- 
matical coprocessor. 
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Mobile phases were prepared from HPLC-grade 
methanol and acetonitrile (Labscan) and purified 
deionized water (Milli-Ro/Milli-Q system; Milli- 
pore). In the sulphonamide experiments water was 
acidified with 1% acetic acid. The test solutes were 
used as purchased. The sulphonamides, diazepam, 
nicotinic acid and theophylline were of pharmaco- 
poeial grade and the benzene derivatives of “zur 
Synthese” grade (Merck, Darmstadt, Germany). 
The test solutions for recording of the spectra were 
prepared freshly at concentrations varying from 
5 pg/ml for the sulphonamides to between 1 and 
150 pg/ml for the other solutes, depending on their 
molar absorptivities. The sulphonamide solutions 
were acidified with 1% acetic acid. The concentra- 
tion of the sulphonamides in the test sample for the 
optimization varied from about 30 to 160 ,ug/ml. 

The spectra of the sulphonamides, A-L (Fig. l), 
constituted the first data set. The second data set was 
formed by the spectra of aniline (A, 0.27), N-butyl 
p-aminobenzoate (B, 0.57), p-cresol (C, 0.63), di- 
methyl phthalate (D, 0.39), ethylbenzene (E, 0.33), 
p-nitrobenzaldehyde (F, 0.69), nitrobenzene (G, 
0.45), 2-phenylethanol (H, 0.21), n-propyl p-hy- 
droxybenzoate (I, 0.15), p-toluidine (J, 0.87), tolu- 
ene (K, 0.93), diazepam (L, 0.51), nicotinic acid (M, 
0.75), theophylline (N, 0.81) and uracil (0, 0.99), 
where the numbers in parentheses refer to peak 
area-factors mentioned below. 

Software 
The following programmes were used: neural net- 

work simulation, Brainmaker vs. 2 (California 
Scientific Software, Sierra Madre, CA, USA); diode- 
array data handling, Philips PU 6003 vs. 3.0 software 
(Analytical Chromatography); data system, vs. 6.0, 
Philips PU 6000 integration software; principal 
components analysis, Unscrambler II, vs. 3.5 (Camo, 
Trondheim, Norway); and optimization software, 
POEM (predicting optimum eluent mixtures), vs. 
3.1 (University Centre of Pharmacy, Groningen, 
Netherlands [3]). 

RESULTS 

Neural network training 
Sulphonamides. The spectra of the twelve sul- 

phonamides (Fig. lA-L) were recorded from 237 to 
390 nm in the six eluent mixtures indicated in 

Table I. One spectrum consisted of 98 absorbance 
values, which were scaled to the same area under the 
curve to remove the concentration effect from the 
spectra. The normalized area is equal to the number 
of data points in the spectrum. To obtain an 
impression of the spectral similarity, the correlation 
coefficients between the twelve spectra recorded in 
design point 4 of Table I were calculated and all 72 
spectra were subjected to a PCA. The results are 
shown in Table II and Fig. 2. The first two PCs 
explained 87% of the variation in the data. From the 
score plot a strong overall similarity is indicated 
between the spectra of analytes G, J and D, D and E 
and K and A. This result is corroborated by high 
values of the corresponding correlation coefficient 
of the corresponding analytes in one eluent composi- 
tion (Table II). From the score plot one can conclude 
that two PCs are not sufficient to identify the 
analytes. 

The neural network was designed to have 98 input 
nodes, 98 nodes in the hidden layer and 12 output 
nodes, the learning rate q= 1 and the momentum 
factor CI = 0.9. The value of the output nodes can 
vary between 0 and 1. The network was trained by 
presenting repeatedly a number of training sets to 
the network. One set can consist of twelve spectra 
recorded in one eluent plus twelve output vectors. 
For example, the spectrum of sulphonamide A is 
presented together with an output vector consisting 
of twelve elements, where 1 is the first element and 
the remaining eleven elements are zeros; the spec- 
trum of sulphonamide B is combined with a vector 
of which the second element is 1 plus eleven zeros, 
etc. The training stops if the difference between the 
output value of each node and the desired value is 
0.1. The trained network is presented with a test set 
of twelve spectra recorded in an eluent that has not 
been used in the training set and the network is 
expected to produce the correct output vector. The 
output vector was assumed to be correct if the value 
of the correct output node was greater than 0.7 while 
the remaining output values were smaller than 0.3. 
These limit values were chosen arbitrarily but are 
considered to be a severe criterion for making a 
decision. 

It is to be expected that if a network is trained with 
a training set of 48 spectra recorded in eluents 1,2,3 
and 4 of Table I, the network should produce the 
correct output vectors, because these design points 
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Fig. 1. Spectra of twelve sulphonamides normalized to the same area under the curve. The spectra were recorded in eluent compositions 
(solid lines) 1 and (dotted lines) 4 in Table I. The correlation coefficient between the two spectra is shown. 
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TABLE I 

ELUENT COMPOSITIONS AT DESIGN POINTS l-6 (SUL- 
PHONAMIDES) 

Design Fraction 
point 
No. Water MeOH MeCN 

1 0.80 0.20 0.00 
2 0.60 0.40 0.00 
3 0.90 0.00 0.10 
4 0.70 0.00 0.30 
5 0.70 0.15 0.15 
6 0.80 0.10 0.10 

span the whole design space. The results of the use of 
different training and test sets are presented in 
Table III. The Error column indicates the number of 
the spectra that were not classified correctly ac- 
cording to the decision criterion, the non-error rate 
(NER) gives the fraction of correct classifications of 
the total number of classifications performed; the 
Cycles column indicates how many times the train- 
ing set had to be presented to train the network and 
the Time column gives the time needed for training. 

The experiments in Table III were repeated after 
the addition of random noise with a Gaussian band 
width of 10% to the training data. The results 
improved very slightly but the training time in- 
creased considerably, up to 3 h for the first experi- 
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ment in Table III. Therefore, we decided to add no 
noise to the training data. 

Two more transformations of the data were 
performed to investigate their effect on network 
training. In both experiments spectra recorded in 
eluents 1, 2, 3 and 4 were used for training and the 
spectra for eluents 5 and 6 in Table I for testing. 

PCA of the training set resulted in five PCs which 
explained completely the variation in the data. An 
object in the training set is now characterized by five 
scores instead of 98 absorbance values. A new 
network consisting of five input nodes, twelve nodes 
in the hidden layer and twelve output nodes needed 
15 h for training. After increasing the number of 
nodes in the hidden layer to 25 the training time was 
reduced to 2.5 h. Both networks identified correctly 
the objects of the test set on the basis of their scores 
on the live PCs. 

From the loading plot of the training set, ten 
wavelengths were selected that contribute most to 
the variation of spectra in the training set. Now an 
object is characterized by 10 instead of 98 absor- 
bance values. Another network consisting of ten 
input nodes, twelve nodes in the hidden layer and 
twelve nodes in the output layer was configured. It 
needed 2.2 h to train and produced correct results. 

On the basis of these results we decided to use 
whole spectra and a network of 98 x 98 x 12 nodes 
for classification because of its good performance in 
the shortest training time. For peak tracking only 
one set of twelve spectra recorded in only one eluent 

TABLE II 

CORRELATION COEFFICIENTS OF SPECTRA OF SULPHONAMIDES RECORDED IN DESIGN POINT 4 OF TABLE I 

Sulphonamide A B C D E F G H I J K L 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

1.000 0.793 0.896 0.887 0.907 0.804 0.890 0.952 
1.000 0.820 0.973 0.955 0.887 0.973 0.863 

1 .ooo 0.908 0.934 0.905 0.894 0.970 
1.000 0.997 0.924 0.993 0.953 

1.000 0.928 0.988 0.972 
1.000 0.939 0.891 

1 .ooo 0.939 
1.000 

0.757 
0.857 
0.857 
0.903 
0.904 
0.982 
0.916 
0.865 
1.000 

0.877 
0.954 
0.904 
0.994 
0.994 
0.918 
0.983 
0.956 
0.915 
1.000 

0.993 
0.848 
0.897 

0.917 

0.930 

0.824 
0.921 

0.950 

0.768 
0.898 
1.000 

0.738 
0.924 
0.831 
0.930 
0.920 
0.973 
0.946 
0.846 
0.980 
0.932 
0.770 
1.000 
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Fig. 2. Score plot of twelve sulphonamide spectra recorded in the six eluent compositions in Table I 

composition should be sufficient to train a network, 
because then only one reference chromatogram is 
necessary. Other, more complicated, strategies are 
possible, but these are not discussed. If we assume 
that from one chromatogram the spectra and ap- 
proximate peak areas can be extracted, then this 
situation can be simulated by multiplying each of the 
normalized spectra recorded in a given eluent com- 
position with a number that represents the peak area 
of the analyte in the corresponding chromatogram. 
The spectra of the sulphonamides were multiplied by 
the peak area values given in Table IV. The spectra 
recorded in one design point of Table I were used to 
train the network and the sets recorded at the live 

remaining design points were used as test sets. 
Table V shows the results. Only 21 of the 360 classi- 
fications were incorrect according to the decision 
criterion but only four times was a wrong analyte 
recognized: the spectrum of sulphadimethoxine (G) 
was attributed to sulphanilamide (A) three times 
and to sulphacetamide (B) once. This indicates that 
the decision criterion is too severe. 

Benzene derivatives. The second set of spectra 
consisted of the spectra of eleven benzene derivatives 
and four other compounds recorded in six different 
eluent compositions (Table VI). These compounds 
give acceptable retention times in this factor space, 
their spectra have more detail and the similarity 

TABLE III 

RESULTS OF TRAINING WITH DIFFERENT SETS OF NORMALIZED SULPHONAMIDE SPECTRA 

Number of eluent in Table I used Error NER” Cycles Time 

(h) 
For training For testing 

1+2+3+4 5+6 
1+4 5+6 
2+3 5+6 
5 1+4 

y NER = non-error rate. 

0 1 .oo 129 0.50 
1 0.96 106 0.22 
0 1.00 138 0.37 
6 0.75 69 0.10 
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TABLE IV TABLE VI 

PEAK AREA VALUES FOR SULPHONAMIDES A-L ELUENT COMPOSITIONS AT DESIGN POINTS l-6 (BEN- 
ZENE DERIVATIVES) 

Sulphonamide Peak 
area 

Sulphonamide Peak 
area 

A 0.69 G 0.55 
B 0.83 H 0.48 
C 0.16 I 0.34 
D 0.41 J 0.20 
E 0.90 K 0.27 
F 0.62 L 0.97 

between the different analytes is smaller, but the 
spectral shifts of the individual analytes in different 
eluents are larger (Fig. 3). The clusters in Figs. 3 and 
2 seem to be similar, but the first two PCs explain 
80% of the variance in the spectra of the benzene 
derivatives against 87% in Fig. 2. 

Spectra were recorded from 190 to 346 nm. Per 
spectrum 100 absorbance values were collected and 
after normalization the spectra were presented to a 
network consisting of 100 input nodes, 15 output 
nodes and a variable number of nodes in the hidden 
layer. In one experiment the normalized spectra 
were multiplied by area factors ranging from 0.15 to 
0.99 (see Experimental). From the results presented 
in Table VII one can conclude that the performance 
of the network decreases as indicated by the NER 
and that the training time increases as indicated by 

TABLE V 

NER AFTER TRAINING WITH ONE SET OF AREA 
MULTIPLIED SULPHONAMIDE SPECTRA 

Number of eluent in Table I used 

Training Testing 

1 2 3 4 5 6 

1 - 0.83 1.00 0.83 0.83 0.92 
2 1.00 - 1.00 1.00 1.00 1.00 
3 1.00 1.00 - 1.00 1.00 1.00 
4 0.83 0.83 0.92 - 0.92 0.92 
5 1 .oo 1.00 0.92 1.00 - 0.92 
6 0.92 0.83 1.00 1.00 0.92 - 

Design 
point 
No. 

1 
2 
3 
4 
5 
6 

Fraction 

Water MeOH ACN 

0.60 0.40 0.00 
0.40 0.60 0.00 
0.65 0.00 0.35 
0.45 0.00 0.55 
0.55 0.25 0.20 
0.45 0.25 0.30 

the number of cycles when the number of hidden 
nodes is decreased from 120 to 10. The decrease in 
performance is not linearly related to the number of 
nodes. There seems to be an optimum number of 
nodes for the hidden layer at about 120 nodes; with 
130 nodes in the hidden layer the performance seems 
to decrease also. For the existence of an optimum 
number of nodes in the hidden layer more indica- 
tions were found from experiments with a network 
that had two hidden layers. 

The number of cycles is an indication of the time 
necessary to train the network, but the training time 
also depends on the amount of data in the training 
set and on the performance of the computer. On a 
training set of twelve spectra the network is trained 
in a few minutes on a fast PC. The last two 
experiments of Table VII show clearly that it is 
essential to multiply the normalized spectra by an 
area factor to train a neural network successfully on 
only one training set. 

Peak tracking and optimization 
It is the aim of this paper to demonstrate the 

feasibility and some limitations of peak tracking 
with a neural network in an optimization procedure 
based on a simplex lattice mixture design. A subsam- 
ple of eight of the sulphonamides was selected, 
because the spectra of the sulphonamides are very 
similar. It was decided to use a ternary mobile phase 
consisting of water, methanol and acetonitrile, be- 
cause we prefer this approach to the use of a 
quaternary eluent consisting of three isoeluotropic 
binary eluents of water with methanol, acetonitrile 
and tetrahydrofuran. With the preferred approach it 
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Fig. 3. Score plot of fifteen benzene derivative spectra recorded in the six eluent compositions in Table VI. 

is possible to optimize simultaneously the solvent bile phases required by the design and peak areas 
strength and solvent selectivity and no experiments were determined with the integration software at 
have to be performed to select the appropriate 270nm (Table VIII). Every 2 s a spectrum was 
isoeluotropic eluents if one has an approximate recorded and for each peak of every chromatogram 
knowledge of the required solvent strength [18]. The one spectrum was selected at the peak maximum. 
factor space and the design points are shown in The selected spectra were normalized and multiplied 
Fig. 4; the corresponding mobile phase composi- by the peak areas. In this way a set of eight spectra 
tions and measured peak areas in Table VIII. per chromatogram were obtained to be used for 

Chromatograms were recorded for the nine mo- peak recognition by the trained network. The net- 

TABLE VII 

RESULTS OF TRAINING DIFFERENT NETWORKS WITH DIFFERENT SETS OF NORMALIZED BENZENE DERIVA- 
TIVE SPECTRA 

Number of eluent in Table VI used 

For training For testing 

1+2+3+4 5+6 

1+2+3+4 5+6 
1+2+3+4 5+6 

1+2+3+4 5+6 
1+2+3+4 5+6 

1+2+3+4 5+6 
5 1+2+3+4 
5” 1+2+3+4 

’ Spectra multiplied by area factor. 

Number of NER Cycles 
hidden 
nodes 

130 0.93 96 
120 1.00 93 
115 0.97 104 
100 0.93 106 

58 0.90 216 
10 0.87 235 

100 0.60 - 
100 1 .oo 75 
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Fig. 4. Mixture triangle which shows the location of the design 

points in the factor space used for the optimization of the 
separation of sulphonamides. 

work was trained with the spectra obtained from 
the chromatogram recorded with mobile phase 7 
(Fig. 4), which then was taken as the reference 
chromatogram (Fig. SC). The reference substances 
were injected separately in the mobile phase of 
design point 8 (Fig. 4) to establish the chemical 
identity of the peaks. The peak areas of the same 
peak measured in the different chromatograms are 
not constant (Table VIII) as they are determined for 
fused peaks by the perpendicular drop method. In a 
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few instances only one integration value was pro- 
duced by the software for a pair of fused peaks 
and the individual peak areas were estimated (see 
Table VIII, values marked “) from the produced 
value using the ratio of the reference chromatogram. 
The inaccuracy of the area factor probably some- 
times affected peak recognition. 

In the chromatogram in Fig. 5E (design point 5) 
peak A was attributed by the network to sulphanil- 
amide and sulphadimetoxine with almost the same 
output value. In this chromatogram, however, peak G 
was correctly recognized as sulphadimethoxine and 
therefore it was safe to assume that peak A belonged 
to sulphanilamide. The same problem occurred in 
the chromatogram in Fig. 5H (design point 8) with 
peaks E and J: two solutes were attributed to each 
peak. As the remaining peaks of the chromatogram 
were recognized unequivocally, it was nevertheless 
possible to attribute the correct solutes to the peaks 
in question by selecting the two solutes that had not 
been attributed unequivocally to the other peaks 
and choosing between them on the basis of the 
retention time. The recognition of the remaining 
peaks in chromatograms of design points 1, 2, 4, 5 
and 8 (Fig. 5A, B, D, E and H) on the basis of the 
highest output value of the network was correctly 
performed without problems. 

The chromatograms in Fig. 5C, F and I posed a 
serious problem owing to very strong overlap of 
several peaks. In the chromatogram in Fig. 5C the 

TABLE VIII 

ELUENT COMPOSITIONS AT THE DESIGN POINTS l-9 OF FIG. 4 AND PEAK AREAS OF THE SULPHONAMIDES 

Design Fraction Sulphonamide 
point 
No. Water MeOH MeCN A F C E H J I G 

1 0.70 0.30 0.00 2.8 7.2 4.2 7.3 2.7 1.6 0.8 5.8 
2 0.60 0.40 0.00 3.4 6.2” 6.2” 7.5 2.8 1.8 0.9 6.0 
3 0.50 0.50 0.00 3.0 6.4 5.0 7.5 3.0” 1.8“ 0.9 5.7 
4 0.80 0.00 0.20 3.2“ 8.2 5.5 8.7 4.0 2.0 0.9 6.5 
5 0.70 0.00 0.30 2.4 7.4 5.5 7.8” 3.7” 2.1 1.0 6.4 
6 0.60 0.00 0.40 3.3” 6.8 5.5” 7.1 3.6” 2.0 1.0 6.0 
7b 0.76b 0.12b 0.12b 2.lb 6.7b 4.5b 7.3b 2.8’ 1.9* o.gb 5.8b 
8 0.66 0.17 0.17 3.2 6.6 4.6 7.4 2.6 1.5 1.0 5.6 
9 0.56 0.22 0.22 5.3 6.2 4.8 8.5 3.0 1.8 1.3 5.6 

’ Estimated values. 
b Values of reference chromatogram. 



156 P. M. J. Coenegracht et al. / J. Chromatogr. 631 (1993) 145-160 

merged second and third peaks contain six solutes 
and peak recognition fails. Normally we would have 
reduced the design space by moving the lower 

boundary in the direction of the apex of the triangle 
after the registration of the chromatogram in point 3 
(Fig. X2), because the resolution is too low. It was 
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Fig. 5. Chromatograms recorded at the nine design points in Fig. 4 plus one PO chromatogram which offers a good compromise between 
resolution and analysis time. The first peak in every chromatogram is uracil, which was used to determine the dead time. 

decided, however, to continue and divide the origi- 
nal sample of eight solutes into two subsamples. The 
two subsamples were injected separately. One sub- 
sample contained the solutes E, F and J and the 
other the remaining solutes. Peak recognition was 
possible in the subsample chromatograms, except in 
design point 6, where the first subsample still showed 
strong overlap. Additional single injections of sol- 
utes E and F were necessary for the determination of 
the capacity factor and a total of fourteen injections 
was needed to complete the determination of the 
capacity factors of eight solutes in nine mobile phase 
compositions. 

The capacity factors of the eight solutes were used 
to model the logarithm of the capacity factor of 
every solute as a function of x1, x2 and x3, which are 

the fractions of the components of the water- 
MeOH-MeCN mobile phase. Polynomial models 
were estimated by multiple linear regression. A grid 
search of the response surfaces predicted the capac- 
ity factor of every solute at all eluent compositions 
of the design space necessary to construct a grid with 
a 1% interval in the eluent composition. In every 
grid point two optimization criteria were calculated: 
the resolution of the worst separated pair of adjacent 
peaks, i.e., the minimum resolution or R, miny and the 
capacity factor of the last-eluted peak, k,,,, which is 
a measure of the analysis time. A contour map of the 
R,,,,i, (Fig. 6) shows two local maxima between 
which one may choose. The choice is guided by the 
second criterion, k,,,, because it advantageous to 
obtain a sufficient value of R,,,,i, in the shortest 
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Fig. 6. Response surface of the minimum resolution, RJmin, of the non-isoeluotropic ternary system water (x,EMeOH (x,)-MeCN (x3). 

Different symbols correspond to ten different ranges of values of R, min. The lowest range is indicated by backslashes (0.00.16) in the 

middle and lower right part of the design space and the highest range by black squares (1.44-l .60) at the left and extreme right of the upper 
boundary of the design space. 

analysis time possible, i.e., at the lowest value of zontal or time axis a scale for k,,, is indicated and 
k max. on the vertical axis a scale for R, min is shown. Every 

The multi-criteria decision making (MCDM) pro- eluent composition of the design space generates one 
cedure [19,20] is well suited to achieve a quantitative value of R,,i, and one value for k,,,. Hence every 
weighting of both criteria against each other. There- eluent composition can be represented by one point 
fore, an MCDM diagram is constructed, consisting in the MCDM diagram. From the resulting cloud of 
of two perpendicular coordinate axes. On the hori- points only the “pareto optimum” (PO) points are 

Rsmin 
1.8 

0.8 
. 

1 2 3 4 5 6 
kmax 

7 8 9 10 

Fig. 7. MCDM diagram. Points represent PO eluent compositions which give the best combinations of Rs min and k,.,. 
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TABLE IX 

MEASURED PEAK AREAS AND PREDICTED AND MEA- 

SURED RETENTION TIMES FOR CHROMATOGRAM IN 
FIG. 5J 

Peak Area Retention time (s) 

Measured Predicted 

2.9 148 140 

6.8 202 198 

4.1 232 234 

7.4 268 268 

2.9 316 317 

1.9 448 448 

0.8 544 534 

5.7 868 875 

shown in the diagram (Fig. 7). A point is called a PO 
point if no other point in the diagram exists that 
yields an improvement in one criterion without 
causing a deterioration of the other criterion. The 
PO points give the eluent compositions that provide 
the best possible combinations of the two criteria 
and show the pay-off between the two criteria. If a 
value of 1.4 for the R, min is acceptable, then the 
value of k,,, is 6.2 for an eluent consisting of water- 
MeOH-MeCN (70:22:8). The corresponding, mea- 
sured chromatogram is shown in Fig. 5J. Owing to 
peak asymmetry, the measured R,,,,i, is lower than 
the predicted value. The predicted retention times, 
however, correspond well with the measured reten- 
tion times (see Table IX, which also shows the 
measured peak areas). The mean, relative difference 
between the measured and predicted values is 1.4%. 
All peaks were correctly recognized by the trained 
neural network. 

CONCLUSIONS 

It has been shown that a simulated feed-forward 
neural network with back-propagation consisting of 
an input, hidden and output layer can be used for 
peak recognition in mixture design-based optimiza- 
tion procedures. 

For peak recognition the normalized UV spec- 
trum of the components and the peak areas were 
used to train the network. Both were required to be 

able to train the network with only one set of 
training data, i.e., the spectra and areas measured in 
only one mobile phase composition. This means that 
the data of only one reference chromatogram were 
needed for tracking the peaks in other chromato- 
grams, which were obtained with different mobile 
phase compositions. If only spectra were used to 
train the network then the spectra recorded in at 
least two different mobile phases are necessary to 
train the network. In that event one reference 
chromatogram is not sufficient and at least two are 
needed, which makes the procedure much less 
attractive. 

The spectra and peak areas of eight sulphon- 
amides were used in an illustrative example. Peak 
recognition of single peaks and of peaks in fused 
clusters of 2-6 components was possible, although 
the spectra of some components were very similar 
and the mean relative standard deviation in the 
measured peak areas was 13%. 

Spectra were recorded at the peak maxima and the 
peaks in the reference chromatogram were almost 
completely separated. The results of this investiga- 
tion, however, suggest that complete separation of 
the peaks in one reference chromatogram is not a 
necessary condition for the success of the procedure. 
It suffices that one can measure for each component 
one spectrum and one peak area. This may be done 
in one or more chromatograms, and single but also 
overlapping peaks can be used, if the spectra can be 
measured at the peak flanks and the peak areas can 
be measured with moderate precision. Almost the 
whole peak tracking procedure was performed with 
commercially available software, i.e., the measure- 
ment of spectra and peak areas and the conligura- 
tion and running of the network. Only for the 
spectrum normalization and the multiplication by 
the peak area did software have to be developed. In 
our opinion, expert knowledge is not required for 
the application of this technique. Once the necessary 
software is available the technique is straightfor- 
ward and fast: network configuration and training 
take a few minutes and peak recognition is instanta- 
neous after presentation of the test data to the 
network. The technique can speed up computer- 
assisted method development and contribute to the 
development of automated optimization procedures 
based on simplex lattice mixture designs. 
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